The relative Fargues–Fontaine curve MATTHEW MORROW

There are two primary goals of this talk:

- (1) Define Y_S and the relative Fargues–Fontaine curve $X_S = Y_S/\phi^{\mathbb{Z}}$ for an arbitrary perfectoid space S over \mathbb{F}_p . These will be adic spaces over $\operatorname{Spa} \mathbb{Q}_p := \operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$ which, in the special case $S = \operatorname{Spa}(\mathbb{C}_p^{\flat}, \mathcal{O}_{\mathbb{C}_p}^{\flat})$, reduce to the adic spaces Y^{ad} and X^{ad} which appeared in Colmez' talk.
- (2) Relate Y_S to untiltings of S and describe how the formula

"
$$Y_S = S \times \operatorname{Spa} \mathbb{Q}_p$$
"

can be made precise using diamonds.

We mention that, by picking an auxiliary local (or perfectoid) field E, one may more generally construct $Y_{S,E}$ and $X_{S,E}$; in this talk we are implicitly restricting entirely to the case $E = \mathbb{Q}_p$.

For further details and references we refer the reader primarily to Caraiani–Scholze $[1, \S 3.3]$ and Fargues $[3, \S 1.1-1.3]$ $[4, \S 1.1-1.4]$.

1. Constructing Y_S and X_S

1.1. Case of affinoid perfectoid S. We begin by constructing Y_S and X_S in the case that $S := \operatorname{Spa}(R, R^+)$ is affinoid perfectoid over \mathbb{F}_p ; fix a pseudo-uniformiser $\pi \in R$. Set $\mathbb{A} := W(R^+)$, which is equipped with the $\langle p, [\pi] \rangle$ -adic topology, and define a preadic $\operatorname{Spa} \mathbb{Q}_p$ -space

$$Y_{(B,B^+)} := \operatorname{Spa}(\mathbb{A},\mathbb{A}) \setminus V(p[\pi]).$$

Concretely, a point of $Y_{(R,R^+)}$ is a continuous absolute value $|\cdot| : \mathbb{A} \to \Gamma \cup \{0\}$ which satisfies $|a| \leq 1$, for all $a \in \mathbb{A}$, and $|p[\pi]| \neq 0$; it follows from this latter condition that the vanishing ideal of $|\cdot|$ is not open in \mathbb{A} , i.e., $Y_{(R,R^+)}$ is an *analytic* preadic space, and that moreover the *radius function*

$$\delta: Y_{(R,R^+)} \longrightarrow (0,1), \quad (|\cdot|,\Gamma) \mapsto p^{-\sup\{r/s \in \mathbb{Q}_{\geq 0}: |[\pi]|^r \ge |p|^s\}}$$

("the closest point to |p| on the positive real line spanned by $|[\pi]|$ ") is a well-defined, continuous map. We may therefore introduce, for any closed interval $I \subset (0, 1)$, the associated *annulus*

$$Y_{(R,R^+)} \stackrel{\text{open}}{\supseteq} Y^I_{(R,R^+)} := \text{the interior of the preimage } \delta^{-1}(I),$$

which can be shown, in the case that $I = [p^{-r/s}, p^{-r'/s'}]$ for $r, s, r', s' \in \mathbb{N}$, to be the rational subdomain of $\operatorname{Spa}(\mathbb{A}, \mathbb{A})$ consisting of those points $|\cdot|$ for which $|[\pi]|^r \leq |p|^s$ and $|[\pi]|^{r'} \geq |p|^{s'}$. Clearly therefore $Y_{(R,R^+)}$ is the filtered increasing union, over all closed intervals $I \subset (0, 1)$, of the associated annuli.

It can be shown that $Y_{(R,R^+)}$ is sheafy, i.e., an adic space. To do this one picks a perfectoid field E/\mathbb{Q}_p and checks that $Y_{(R,R^+)}^I \times_{\operatorname{Spa}\mathbb{Q}_p} \operatorname{Spa} E$ is affinoid perfectoid, hence sheafy by Scholze or Kedlaya–Liu. In other words $Y_{(R,R^+)}^I$ is preperfectoid, and hence is also sheafy; see [2, §2.2] for further details and references. It then

follows immediately from the description of $Y_{(R,R^+)}$ as a union of annuli that it is also sheafy.

1.2. The quotient by the Frobenius. The usual Witt vector Frobenius ϕ on \mathbb{A} induces a Frobenius action ϕ on $Y_{(R,R^+)}$ which satisfies $\delta(\phi(y)) = \delta(y)^{1/p}$ for all $y \in Y_{(R,R^+)}$. It follows that this latter action is proper and totally discontinuous, whence

$$X_{(R,R^+)} := Y_{(R,R^+)} / \phi^{\mathbb{Z}}$$

is a well-defined adic space over $\operatorname{Spa} \mathbb{Q}_p$ and $Y_{(R,R^+)} \to X_{(R,R^+)}$ is an open quotient map. Moreover, if $I = [a,b] \subset (0,1)$ is an interval satisfying $b^p < a \leq b < a^{1/p}$, then $Y_{(R,R^+)}^I$ is disjoint from $\phi^n(Y_{(R,R^+)}^I)$ for all $0 \neq n \in \mathbb{Z}$, and so this quotient map sends $Y_{(R,R^+)}^I$ isomorphically to an open subspace of $X_{(R,R^+)}$. In short, sufficiently thin annuli provide an explicit affinoid open cover of $X_{(R,R^+)}$.

1.3. The case of general S. For any closed interval $I \subset (0,1)$ and suitable elements $f_1, \ldots, f_n, g \in \mathbb{R}^+$, it is not hard to check that there is a natural identification between

$$Y_{(R,R^+)}^I \left\langle \frac{[f_1], \dots, [f_n]}{[g]} \right\rangle \qquad \text{and} \qquad Y_{(R \left\langle \frac{f_1, \dots, f_n}{g} \right\rangle, R \left\langle \frac{f_1, \dots, f_n}{g} \right\rangle^+),}$$

where the left is a rational subdomain of $Y_{(R,R^+)}^I$ and the right is $Y_{(-,-)}^I$ of a localisation of the pair (R, R^+) . It is therefore straightforward to glue along rational subdomains in order to define Y_S and the relative Fargues-Fontaine curve $X_S := Y_S / \phi^{\mathbb{Z}}$ for an arbitrary perfectoid space S over \mathbb{F}_p .

1.4. The map θ . In the case in which S is the tilt $S^{\sharp \flat}$ of some fixed perfectoid space S^{\sharp} over $\operatorname{Spa} \mathbb{Q}_p$, there is an induced closed immersion $\theta : S^{\sharp} \hookrightarrow Y_S$ which is locally given by Fontaine's map $\theta : W(R^+) \to R^{\sharp +}$ arising from the universal property of Witt vectors. Remarkably, the composition $S^{\sharp} \stackrel{\theta}{\hookrightarrow} Y_S \to X_S$ is still a closed embedding: indeed, we may assume that $S = \operatorname{Spa}(R, R^+)$ and $S^{\sharp} =$ $\operatorname{Spa}(R^{\sharp}, R^{\sharp +})$ are affinoid perfectoid, in which case the kernel of Fontaine's map is generated by a *degree one primitive element*, i.e., an element $\xi \in \mathbb{A}$ of the form $\xi = [\pi] + pu$ where $\pi \in R$ is a pseudo-uniformiser and $u \in \mathbb{A}^{\times}$; it follows easily that the closed immersion $\theta : \operatorname{Spa}(R^{\sharp}, R^{\sharp +}) \hookrightarrow Y_{(R,R^+)}$ factors through the annulus associated to the interval $[p^{-1}, p^{-1}]$, which as explained in 1.2 maps isomorphically to an open subspace of $X_{(R,R^+)}$.

2. DIAMONDS AND UNTILTING

If X is an analytic adic space over $\operatorname{Spa}(\mathbb{Z}_p, \mathbb{Z}_p)$, then there is an associated presheaf

 $X^\diamond : \operatorname{Perf}_{\mathbb{F}_p} \longrightarrow \operatorname{Sets}, \qquad T \mapsto \operatorname{untilts} \operatorname{over} X \operatorname{of} T,$

where the right side is more precisely defined to the set of pairs, up to the obvious notion of an isomorphism of pairs, (T^{\sharp}, ι) where T^{\sharp} is a perfectoid space over Xand $\iota: T^{\sharp\flat} \xrightarrow{\simeq} T$. If X is itself a perfectoid space, then the equivalence of categories between perfectoid spaces over X^{\flat} and perfectoid spaces over X implies that X^{\diamond} canonical identifies with the representable presheaf $\operatorname{Hom}(-, X^{\flat})$; as a special case, if X is a perfectoid space over \mathbb{F}_p then X^{\diamond} identifies with $\operatorname{Hom}(-, X)$.

An important result (though not strictly necessary for the talk) is that X^{\diamond} is a sheaf for the pro-étale topology on $\operatorname{Perf}_{\mathbb{F}_p}$, and even a diamond (recall from Hellmann's talk that diamonds are a full subcategory – informally the pro-étale quotients of representable objects – of pro-étale sheaves on $\operatorname{Perf}_{\mathbb{F}_p}$). Informally, this is proved by picking a perfectoid cover $\{U_i\}_i$ of X in the pro-étale topology and then noting that X^{\diamond} is a pro-étale quotient of $\bigsqcup_i U_i^{\diamond} = \bigsqcup_i \operatorname{Hom}(-, U_i^{\flat})$.

We may now state the two main results of the talk; let S be a perfectoid space over \mathbb{F}_p . Firstly, there is a natural isomorphism of diamonds (equivalently, of pro-étale sheaves on $\operatorname{Perf}_{\mathbb{F}_p}$)

$$Y_S^\diamond \cong S^\diamond \times \operatorname{Spa} \mathbb{Q}_p^\diamond,$$

which gives a precise meaning to the sense in which Y_S is the product of S and $\operatorname{Spa} \mathbb{Q}_p$. Secondly, the following four collections are in canonical bijection with one another:

- (I) Sections of the projection $Y_S^\diamond \to S^\diamond$.
- (II) Maps $S^{\diamond} \to \operatorname{Spa} \mathbb{Q}_p^{\diamond}$.
- (III) Untilts in characteristic zero (i.e., over $\operatorname{Spa} \mathbb{Q}_p$) of S.
- (IV) Closed immersions into Y_S defined locally by a degree one primitive element.

Concerning proofs, we restrict ourselves here to the briefest sketch. The isomorphism in the product formula is given, for each test object $T \in \operatorname{Perf}_{\mathbb{F}_n}$, by

$$\operatorname{Hom}(T,S) \times \operatorname{Spa} \mathbb{Q}_p^{\diamond}(T) \longrightarrow Y_S^{\diamond}(T), \qquad (f, (T^{\sharp}, \iota)) \mapsto (T^{\sharp}, \iota),$$

where the T^{\sharp} on the right is viewed as a perfectoid space over Y_S via the composition

$$T^{\sharp} \stackrel{\theta}{\hookrightarrow} Y_{T^{\sharp\flat}} \stackrel{\iota}{\cong} Y_T \stackrel{f}{\to} Y_S.$$

This is shown to be a bijection using the universal nature of Fontaine's map. Meanwhile, (I) and (II) trivially correspond since $Y_S^{\diamond} \cong S^{\diamond} \times \operatorname{Spa} \mathbb{Q}_p$; secondly, (II) and (III) correspond by the Yoneda Lemma; thirdly, (III) and (IV) correspond thanks to the converse of an assertion in 1.4, namely that each degree one primitive element $\xi \in \mathbb{A}$ gives rise to an untilt $\mathbb{A}/\xi[\frac{1}{p}]$ of R.

The two main results of the previous paragraph have obvious analogues in which Y_S is replaced by X_S , untilts are taken modulo Frobenius equivalence, and S^\diamond is replaced by $S^\diamond/\phi^{\mathbb{Z}}$, though these were unfortunately not covered in the talk.

References

- A. CARAIANI AND P. SCHOLZE, On the generic part of the cohomology of compact unitary Shimura varieties, arXiv:1511.02418, (2015).
- [2] L. FARGUES, Quelques résultats et conjectures concernant la courbe, Astérisque, (2015), pp. 325–374. In De la géométrie algébrique aux formes automorphes (I).
- [3] L. FARGUES, Géométrisation de la correspondance de Langlands locale, Preprint, (2016).
- [4] L. FARGUES, Geometrization of the local Langlands correspondence: an overview, arXiv:1602.00999, (2016).